Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Front Immunol ; 15: 1384406, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596681

RESUMEN

Introduction: The autoimmune response in type 1 diabetes (T1D), in which the beta cells expressing aberrant or modified proteins are killed, resembles an effective antitumor response. Defective ribosomal protein products in tumors are targets of the anti-tumor immune response that is unleashed by immune checkpoint inhibitor (ICI) treatment in cancer patients. We recently described a defective ribosomal product of the insulin gene (INS-DRiP) that is expressed in stressed beta cells and targeted by diabetogenic T cells. T1D patient-derived INS-DRiP specific T cells can kill beta cells and are present in the insulitic lesion. T cells reactive to INS-DRiP epitopes are part of the normal T cell repertoire and are believed to be kept in check by immune regulation without causing autoimmunity. Method: T cell autoreactivity was tested using a combinatorial HLA multimer technology measuring a range of epitopes of islet autoantigens and neoantigen INS-DRiP. INS-DRiP expression in human pancreas and insulinoma sections was tested by immunohistochemistry. Results: Here we report the induction of islet autoimmunity to INS-DRiP and diabetes after ICI treatment and successful tumor remission. Following ICI treatment, T cells of the cancer patient were primed against INS-DRiP among other diabetogenic antigens, while there was no sign of autoimmunity to this neoantigen before ICI treatment. Next, we demonstrated the expression of INS-DRiP as neoantigen in both pancreatic islets and insulinoma by staining with a monoclonal antibody to INS-DRiP. Discussion: These results bridge cancer and T1D as two sides of the same coin and point to neoantigen expression in normal islets and insulinoma that may serve as target of both islet autoimmunity and tumor-related autoimmunity.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulinoma , Neoplasias Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/terapia , Autoinmunidad/genética , Insulinoma/genética , Insulinoma/terapia , Insulinoma/complicaciones , Autoantígenos , Insulina , Epítopos , Inmunoterapia/métodos
2.
Cancer Discov ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581685

RESUMEN

Understanding the role of the tumour microenvironment (TME) in lung cancer is critical to improving patient outcome. We identified four histology-independent archetype TMEs in treatment-naive early-stage lung cancer using imaging mass cytometry in the TRACERx study (n=81 patients/198 samples/2.3million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterised by sparse lymphocytes and high tumour-associated neutrophil (TAN) infiltration, had tumour cells spatially separated from vasculature and exhibited low spatial intratumour heterogeneity. TAN-High LUSC had frequent PIK3CA mutations. TAN-High tumours harboured recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis.

4.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552609

RESUMEN

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Asunto(s)
Neoplasias , Humanos , Carcinogénesis , Microbiota , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Obesidad/complicaciones , Calidad de Vida
5.
Nat Rev Cancer ; 24(1): 51-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062252

RESUMEN

The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.


Asunto(s)
Neoplasias , Receptores de IgG , Humanos , Receptores de IgG/genética , Receptores de IgG/metabolismo , Inmunoglobulina G/metabolismo , Inmunomodulación , Inmunoterapia , Neoplasias/terapia
7.
Matrix Biol Plus ; 19-20: 100137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020586

RESUMEN

Background: Cancer cells remodel their local physical environment through processes of matrix reorganisation, deposition, stiffening and degradation. Urokinase-type plasminogen activator (uPA), which is encoded by the PLAU gene, is an extracellular proteolytic enzyme known to be involved in cancer progression and tumour microenvironment (TME) remodelling. Perturbing uPA therefore has a strong potential as a mechano-based cancer therapy. This work is a bioengineering investigation to validate whether 1) uPA is involved in matrix degradation and 2) preventing matrix degradation by targeting uPA can reduce cancer cell invasion and metastasis. Methods: To this aim, we used an engineered 3D in vitro model, termed the tumouroid, that appropriately mimics the tumour's native biophysical environment (3 kPa). A CRISPR-Cas9 mediated uPA knockout was performed to introduce a loss of function mutation in the gene coding sequence. Subsequently, to validate the translational potential of blocking uPA action, we tested a pharmacological inhibitor, UK-371,801. The changes in matrix stiffness were measured by atomic force microscopy (AFM). Invasion was quantified using images of the tumouroid, obtained after 21 days of culture. Results: We showed that uPA is highly expressed in invasive breast and colorectal cancers, and these invasive cancer cells locally degrade their TME. PLAU (uPA) gene knock-out (KO) completely stopped matrix remodelling and significantly reduced cancer invasion. Many invasive cancer gene markers were also downregulated in the PLAU KO tumouroids. Pharmacological inhibition of uPA showed similarly promising results, where matrix degradation was reduced and so was the cancer invasion. Conclusion: This work supports the role of uPA in matrix degradation. It demonstrates that the invasion of cancer cells was significantly reduced when enzymatic breakdown of the TME matrix was prevented. Collectively, this provides strong evidence of the effectiveness of targeting uPA as a mechano-based cancer therapy.

8.
Nat Rev Drug Discov ; 22(12): 996-1017, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37891435

RESUMEN

The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.


Asunto(s)
Neoplasias , Proteoma , Humanos , Proteoma/metabolismo , Linfocitos T CD8-positivos/metabolismo , Antígenos de Neoplasias , Receptores de Antígenos de Linfocitos T , Neoplasias/tratamiento farmacológico
9.
Immunity ; 56(10): 2270-2295, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37820584

RESUMEN

Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.


Asunto(s)
Neoplasias , Humanos , Tolerancia Inmunológica , Linfocitos T , Inmunoterapia , Evasión Inmune
10.
J Immunother Cancer ; 11(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37399358

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells have shown remarkable results against B-cell malignancies, but only a minority of patients have long-term remission. The metabolic requirements of both tumor cells and activated T cells result in production of lactate. The export of lactate is facilitated by expression of monocarboxylate transporter (MCTs). CAR T cells express high levels of MCT-1 and MCT-4 on activation, while certain tumors predominantly express MCT-1. METHODS: Here, we studied the combination of CD19-specific CAR T-cell therapy with pharmacological blockade of MCT-1 against B-cell lymphoma. RESULTS: MCT-1 inhibition with small molecules AZD3965 or AR-C155858 induced CAR T-cell metabolic rewiring but their effector function and phenotype remained unchanged, suggesting CAR T cells are insensitive to MCT-1 inhibition. Moreover, improved cytotoxicity in vitro and antitumoral control on mouse models was found with the combination of CAR T cells and MCT-1 blockade. CONCLUSION: This work highlights the potential of selective targeting of lactate metabolism via MCT-1 in combination with CAR T cells therapies against B-cell malignancies.


Asunto(s)
Linfoma de Células B , Receptores Quiméricos de Antígenos , Animales , Ratones , Inmunoterapia Adoptiva/métodos , Linfoma de Células B/terapia , Lactatos , Tratamiento Basado en Trasplante de Células y Tejidos
11.
Oncoimmunology ; 12(1): 2222560, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363104

RESUMEN

Focal radiation therapy (RT) has attracted considerable attention as a combinatorial partner for immunotherapy (IT), largely reflecting a well-defined, predictable safety profile and at least some potential for immunostimulation. However, only a few RT-IT combinations have been tested successfully in patients with cancer, highlighting the urgent need for an improved understanding of the interaction between RT and IT in both preclinical and clinical scenarios. Every year since 2016, ImmunoRad gathers experts working at the interface between RT and IT to provide a forum for education and discussion, with the ultimate goal of fostering progress in the field at both preclinical and clinical levels. Here, we summarize the key concepts and findings presented at the Sixth Annual ImmunoRad conference.


Asunto(s)
Neoplasias , Humanos , Terapia Combinada , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Inmunoterapia
12.
Cell Rep ; 42(5): 112472, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37149862

RESUMEN

Glioblastoma (GBM) recurrence originates from invasive margin cells that escape surgical debulking, but to what extent these cells resemble their bulk counterparts remains unclear. Here, we generated three immunocompetent somatic GBM mouse models, driven by subtype-associated mutations, to compare matched bulk and margin cells. We find that, regardless of mutations, tumors converge on common sets of neural-like cellular states. However, bulk and margin have distinct biology. Injury-like programs associated with immune infiltration dominate in the bulk, leading to the generation of lowly proliferative injured neural progenitor-like cells (iNPCs). iNPCs account for a significant proportion of dormant GBM cells and are induced by interferon signaling within T cell niches. In contrast, developmental-like trajectories are favored within the immune-cold margin microenvironment resulting in differentiation toward invasive astrocyte-like cells. These findings suggest that the regional tumor microenvironment dominantly controls GBM cell fate and biological vulnerabilities identified in the bulk may not extend to the margin residuum.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células-Madre Neurales , Animales , Ratones , Glioblastoma/genética , Glioblastoma/patología , Diferenciación Celular , Microambiente Tumoral , Células-Madre Neurales/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
13.
Semin Cancer Biol ; 92: 139-149, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37037400

RESUMEN

Quiescence is a state of cell cycle arrest, allowing cancer cells to evade anti-proliferative cancer therapies. Quiescent cancer stem cells are thought to be responsible for treatment resistance in glioblastoma, an aggressive brain cancer with poor patient outcomes. However, the regulation of quiescence in glioblastoma cells involves a myriad of intrinsic and extrinsic mechanisms that are not fully understood. In this review, we synthesise the literature on quiescence regulatory mechanisms in the context of glioblastoma and propose an ecological perspective to stemness-like phenotypes anchored to the contemporary concepts of niche theory. From this perspective, the cell cycle regulation is multiscale and multidimensional, where the niche dimensions extend to extrinsic variables in the tumour microenvironment that shape cell fate. Within this conceptual framework and powered by ecological niche modelling, the discovery of microenvironmental variables related to hypoxia and mechanosignalling that modulate proliferative plasticity and intratumor immune activity may open new avenues for therapeutic targeting of emerging biological vulnerabilities in glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Neoplasias Encefálicas/patología , Encéfalo/metabolismo , Células Madre Neoplásicas/metabolismo , Diferenciación Celular , Microambiente Tumoral
14.
BMJ Open ; 12(11): e063037, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36396306

RESUMEN

INTRODUCTION: Multiple myeloma is a plasma cell malignancy that accounts for 1%-2% of newly diagnosed cancers.At diagnosis, approximately 20% of patients can be identified, using cytogenetics, to have inferior survival (high-risk). Additionally, standard-risk patients, with detectable disease (minimal residual disease (MRD)-positive) postautologus stem cell transplant (ASCT), fare worse compared with those who do not (MRD-negative). Research is required to determine whether a risk-adapted approach post-ASCT could further improve patient outcomes. METHODS: RADAR is a UK, multicentre, risk-adapted, response-guided, open-label, randomised controlled trial for transplant-eligible newly diagnosed multiple myeloma patients, using combinations of lenalidomide (R), cyclophosphamide (Cy), bortezomib (Bor), dexamethasone (D) and isatuximab (Isa).Participants receive RCyBorD(x4) induction therapy, followed by high-dose melphalan and ASCT. Post-ASCT, there are three pathways as follows:A phase III discontinuation design to assess de-escalating therapy in standard-risk MRD-negative patients. Participants receive 12 cycles of Isa maintenance. Those who remain MRD-negative are randomised to either continue or stop treatment.A phase II/III multiarm multistage design to test treatment strategies for treatment escalation in standard-risk MRD-positive patients. Participants are randomised to either; R, RBorD(x4) +R, RIsa, or RBorIsaD(x4) + RIsa.A phase II design to assess the activity of intensive treatment strategies in high-risk patients. Participants are randomised to RBorD(x4) +R or RBorIsaD(x4) + RIsa.1400 participants will be registered to allow for 500, 450 and 172 participants in each pathway. Randomisations are equal and treatment is given until disease progression or intolerance. ETHICS AND DISSEMINATION: Ethical approval was granted by the London-Central Research Ethics Committee (20/LO/0238) and capacity and capability confirmed by the appropriate local research and development department for each participating centre prior to opening recruitment. Participant informed consent is required before trial registration and reconfirmed post-ASCT. Results will be disseminated by conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: ISCRTN46841867.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Trasplante Autólogo , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre/efectos adversos , Neoplasia Residual/etiología , Reino Unido , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase II como Asunto
16.
Nat Cancer ; 3(11): 1336-1350, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36302895

RESUMEN

Despite the clinical success of checkpoint inhibitors, a substantial gap still exists in our understanding of their mechanism of action. While antibodies to cytotoxic T lymphocyte-associated protein-4 (CTLA-4) were developed to block inhibitory signals in T cells, several recent studies have demonstrated that Fcγ receptor (FcγR)-dependent depletion of regulatory T cells (Treg) is critical for antitumor activity. Here, using single-cell RNA sequencing, we dissect the impact of anti-CTLA-4-blocking, Treg cell-depleting and FcR-engaging activity on the immune response within tumors. We observed a rapid remodeling of the innate immune landscape as early as 24 h after treatment. Using genetic Treg cell ablation models, we show that immune remodeling was not driven solely by Treg cell depletion or CTLA-4 blockade but mainly through FcγR engagement, downstream activation of type I interferon signaling and reduction of suppressive macrophages. Our findings indicate that FcγR engagement and innate immune remodeling are involved in successful anti-CTLA-4 treatment, supporting the development of optimized immunotherapy agents bearing these features.


Asunto(s)
Interferón Tipo I , Microambiente Tumoral , Receptores de IgG , Linfocitos T Reguladores , Inmunidad Innata
17.
J Transl Med ; 20(1): 391, 2022 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058945

RESUMEN

Advances in immune checkpoint and combination therapy have led to improvement in overall survival for patients with advanced melanoma. Improved understanding of the tumor, tumor microenvironment and tumor immune-evasion mechanisms has resulted in new approaches to targeting and harnessing the host immune response. Combination modalities with other immunotherapy agents, chemotherapy, radiotherapy, electrochemotherapy are also being explored to overcome resistance and to potentiate the immune response. In addition, novel approaches such as adoptive cell therapy, oncogenic viruses, vaccines and different strategies of drug administration including sequential, or combination treatment are being tested. Despite the progress in diagnosis of melanocytic lesions, correct classification of patients, selection of appropriate adjuvant and systemic theràapies, and prediction of response to therapy remain real challenges in melanoma. Improved understanding of the tumor microenvironment, tumor immunity and response to therapy has prompted extensive translational and clinical research in melanoma. There is a growing evidence that genomic and immune features of pre-treatment tumor biopsies may correlate with response in patients with melanoma and other cancers, but they have yet to be fully characterized and implemented clinically. Development of novel biomarker platforms may help to improve diagnostics and predictive accuracy for selection of patients for specific treatment. Overall, the future research efforts in melanoma therapeutics and translational research should focus on several aspects including: (a) developing robust biomarkers to predict efficacy of therapeutic modalities to guide clinical decision-making and optimize treatment regimens, (b) identifying mechanisms of therapeutic resistance to immune checkpoint inhibitors that are potentially actionable, (c) identifying biomarkers to predict therapy-induced adverse events, and (d) studying mechanism of actions of therapeutic agents and developing algorithms to optimize combination treatments. During the Melanoma Bridge meeting (December 2nd-4th, 2021, Naples, Italy) discussions focused on the currently approved systemic and local therapies for advanced melanoma and discussed novel biomarker strategies and advances in precision medicine as well as the impact of COVID-19 pandemic on management of melanoma patients.


Asunto(s)
COVID-19 , Melanoma , Biomarcadores , Humanos , Inmunoterapia/métodos , Italia , Melanoma/genética , Pandemias , Microambiente Tumoral
18.
19.
Nat Cancer ; 3(6): 696-709, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35637401

RESUMEN

Murine tissues harbor signature γδ T cell compartments with profound yet differential impacts on carcinogenesis. Conversely, human tissue-resident γδ cells are less well defined. In the present study, we show that human lung tissues harbor a resident Vδ1 γδ T cell population. Moreover, we demonstrate that Vδ1 T cells with resident memory and effector memory phenotypes were enriched in lung tumors compared with nontumor lung tissues. Intratumoral Vδ1 T cells possessed stem-like features and were skewed toward cytolysis and helper T cell type 1 function, akin to intratumoral natural killer and CD8+ T cells considered beneficial to the patient. Indeed, ongoing remission post-surgery was significantly associated with the numbers of CD45RA-CD27- effector memory Vδ1 T cells in tumors and, most strikingly, with the numbers of CD103+ tissue-resident Vδ1 T cells in nonmalignant lung tissues. Our findings offer basic insights into human body surface immunology that collectively support integrating Vδ1 T cell biology into immunotherapeutic strategies for nonsmall cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T
20.
Hematol Oncol ; 40(4): 541-553, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35451108

RESUMEN

The spatial architecture of the lymphoid tissue in follicular lymphoma (FL) presents unique challenges to studying its immune microenvironment. We investigated the spatial interplay of T cells, macrophages, myeloid cells and natural killer T cells using multispectral immunofluorescence images of diagnostic biopsies of 32 patients. A deep learning-based image analysis pipeline was tailored to the needs of follicular lymphoma spatial histology research, enabling the identification of different immune cells within and outside neoplastic follicles. We analyzed the density and spatial co-localization of immune cells in the inter-follicular and intra-follicular regions of follicular lymphoma. Low inter-follicular density of CD8+FOXP3+ cells and co-localization of CD8+FOXP3+ with CD4+CD8+ cells were significantly associated with relapse (p = 0.0057 and p = 0.0019, respectively) and shorter time to progression after first-line treatment (Logrank p = 0.0097 and log-rank p = 0.0093, respectively). A low inter-follicular density of CD8+FOXP3+ cells is associated with increased risk of relapse independent of follicular lymphoma international prognostic index (FLIPI) (p = 0.038, Hazard ratio (HR) = 0.42 [0.19, 0.95], but not independent of co-localization of CD8+FOXP3+ with CD4+CD8+ cells (p = 0.43). Co-localization of CD8+FOXP3+ with CD4+CD8+ cells is predictors of time to relapse independent of the FLIPI score and density of CD8+FOXP3+ cells (p = 0.027, HR = 0.0019 [7.19 × 10-6 , 0.49], This suggests a potential role of inter-follicular CD8+FOXP3+ and CD4+CD8+ cells in the disease progression of FL, warranting further validation on larger patient cohorts.


Asunto(s)
Linfoma Folicular , Linfocitos T CD8-positivos , Factores de Transcripción Forkhead , Humanos , Linfoma Folicular/patología , Recurrencia Local de Neoplasia , Pronóstico , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA